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(57) ABSTRACT 

Method system, and product from application of the method, 
for design of a subsonic airfoil shape, beginning with an 
arbitrary initial airfoil shape and incorporating one or more 
constraints on the airfoil geometric parameters and flow char- 
acteristics. The resulting design is robust against variations in 
airfoil dimensions and local airfoil shape introduced in the 
airfoil manufacturing process. A perturbation procedure pro- 
vides a class of airfoil shapes, beginning with an initial airfoil 
shape. 

12 Claims, 19 Drawing Sheets 
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essary constraints on the design. In one embodiment, the 
method implements the following steps or processes: (1) 
provide a specification of a desired pressure value at each of 
a sequence of selected locations on a perimeter of a turbine 

5 airfoil; (2) provide an initial airfoil shape; (3) provide a state- 
ment of at least one constraint that a final airfoil shape must 
conform to; (4) use computational fluid dynamics (“CFD’) to 
estimate a pressure value at each of the selected perimeter 
locations for the initial airfoil shape; ( 5 )  use computational 

i o  fluid dynamics (CFD) to determine the pressure distribution 
for airfoil shapes that are small perturbations to the initial 
airfoil shape; (6) use an estimation method, such as a neural 
network, a support vector machine, or a combination thereof, 
to construct a response surface that models the pressure dis- 

15 tribution as a function ofthe airfoil shape, using the CFD data; 
(7) use an optimization algorithm to search the response 
surface for the airfoil shape having a corresponding pressure 
distribution that is closer to the specified target pressure dis- 
tribution; and (8) provide at least one of an alphanumeric 

20 description and a graphical description of the modified airfoil 
shape. 

The constraint(s) may be drawn from the following group 
or may be one or more other suitable constraints: vortex 
shedding from the trailing edge of the airfoil is no greater than 

25 a selected threshold value; a difference between any resonant 
frequency of the airfoil and the vortex shedding frequency is 
at least equal to a threshold frequency difference; mass ofthe 
airfoil is no larger than a threshold mass value; and pressure 
value at each of a sequence of selected locations along a 

30 perimeter ofthe airfoil differs from a corresponding reference 
pressure value by no more than a threshold pressure differ- 
ence value. 

1 
ROBUST, OPTIMAL SUBSONIC AIRFOIL 

SHAPES 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

This application is a Continuation In Part of prior applica- 
tion Ser. No. 101043,044, filed Jan. 7,2002 now U.S. Pat. No. 
6,961,719. 

ORIGIN OF THE INVENTION 

This invention was made, in part, by an employee of the 
U.S. government. The U.S. government has the right to make, 
use and/or sell the invention described herein without pay- 
ment of compensation therefor, including but not limited to 
payment of royalties. 

FIELD OF THE INVENTION 

This invention relates to design of optimal shapes of air- 
foils, such as turbine blades, operating in subsonic flow 
regimes. 

BACKGROUND OF THE INVENTION 

An airfoil, such as a propeller blade or a turbine vane or 
blade (collectively referred to herein as an “airfoil”), may be 
used in a variety of environments, including different ambient 
temperatures, gas densities, gas compositions, gas flow rates, 
pressures and motor rpm. An airfoil shape that is optimized 
for one environment may have sharply limited application in 
another environment. For example, vortex shedding at a trail- 
ing edge of a rotating airfoil may be tolerable for the nominal 
design but may become unacceptably high, resulting in airfoil 
cracking when the manufactured airfoil differs slightly from 
the specifications. The airfoil design may be constrained by 
certain physical and/or geometrical considerations that limit 
the range of airfoil parameters that can be incorporated in the 
design. 

Present designs sometimes lead to extensive airfoil crack- 
ing or other failure modes after operation over modest time 
intervals of the order of a few hours. For example, the vane 
trailing edge fillet radii for the Space Shuttle Main Engine 
L.P.O.T.P. (low pressure oxidizer turbopump) have occasion- 
ally been observed to develop cracks having a mean crack 
length of about 0.1 5 inches. This cracking behavior may arise 
from strong vortex shedding at the vane trailing edges, com- 
pounded by the relatively thin vane trailing edges and/or from 
the presence of small imperfections in the airfoil trailing edge 
shape formed in the airfoil manufacturing process. 

What is needed is a method for determination of an optimal 
airfoil shape that provides an approximately optimal shape 
for a class of environments. This airfoil must be robust 
enough to operate satisfactorily in these environments and 
with any reasonable differences from manufacturing specs, 
and satisfies the constraints imposed on the design. Prefer- 
ably, the method should be flexible and should be extendible 
to a larger class of requirements and to changes in the con- 
straints imposed. 

SUMMARY OF THE INVENTION 

These needs are met by the invention, which provides a 
method, and a product produced by the method, for determi- 
nation of a robust, optimal subsonic airfoil shape, beginning 
with an arbitrary initial airfoil shape and imposing the nec- 

BRIEF DESCRIPTION OF THE DRAWINGS 
35 

FIG. 1 graphically illustrates an improvement in match of 
a polynomial, where an increased number of training pairs is 
included in a simple NN analysis. 

FIG. 2 is a schematic view of a three-layer feed-forward 
neural net in the prior art. 

FIG. 3 is a schematic view of a two-layer feed-forward 
NN1SVM (neural networWsupport vector machine) system 
according to the invention. 

FIG. 4 is a flow chart of an overall procedure for practicing 
the invention using an NN1SVM system. 

FIGS. 5, 6 and 7 graphically illustrate generalization 
curves obtained for a fifth degree polynomial, a logarithm 
function and an exponential function, respectively, using a 

FIGS. SA/SB/SC are a flow chart for a response surface 
method used in practicing the invention. 

FIG. 9 illustrates an initial airfoil shape (dotted curve) and 
an optimized airfoil shape (solid curve) for a turbine blade 

55 produced by the invention, for a specified class of environ- 
ments. 

FIG. 10 compares the initial and optimized airfoil shape in 
more detail near the trailing edge of the blade illustrated in 
FIG. 9. 

FIGS. 11A and 11B graphically illustrate surface pressure 
distribution for the initial and optimized airfoil shapes shown 
in FIG. 9. 

FIG. 12 graphically illustrates unsteady surface pressure 
65 loading (maximum pressure minus minimum pressure as the 

pressures fluctuate in time) for the initial and optimized air- 
foil shapes. 

40 

45 

50 hybrid NN1SVM analysis and 11 training values. 

60 
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FIGS. 13 and 14 each graphically illustrate resulting 
unsteady pressure loading on an airfoil perimeter for the 
optimized airfoil shape for ten perturbations of the optimal 
shape. 

FIGS. 15 and 16 illustrate airfoil shape for each of the ten 
perturbations introduced in FIGS. 13 and 14. 

FIG. 17 illustrates a perturbation procedure that may be 
applied to vary the shape of an airfoil. 

DESCRIPTION OF BEST MODES OF THE 
INVENTION 

Consider a feed-forward neural network ("NN") 21 having 
an input layer with nodes 23-m (m=l, . . . , 5 ) ,  a hidden layer 
with nodes 25-n (n=1, 2,3), and an output node 26, as illus- 
trated schematically in FIG. 2. The first input layer node 23-1 
has a bias input value 1, in appropriate units. The remaining 
nodes of the input layer are used to enter selected parameter 
values as input variables, expressed as a vector p=(pl, . . . , 
pM), with M Z  1. Each node 25-n of the hidden layer is asso- 
ciated with a nonlinear activation function 

of a weighted sum of the parameter values p,, where C,, is a 
connection weight, which can be positive, negative or zero, 
linking an input node 23-m witha hiddenlayernode 25-n. The 
output of the network 21 is assumed for simplicity, initially, to 
be a single-valued scalar, 

N 

r = D, . qn. 
n=l  

FIG. 2 illustrates a conventional three-layer NN, with an 
input layer, a hidden layer and an output layer that receives 
and combines the resulting signals produced by the hidden 
layer. 

It is known that NN approximations of the format set forth 
in Eqs. (1) and (2) are dense in the space of continuous 
functions when the activation functions a, are continuous 
sigmoidal functions (monotonically increasing functions, 
with a selected lower limit, such as 0, and a selected upper 
limit, such as 1). Three commonly used sigmoidal functions 
are 

a (z)= 1/{ 1 +exp(-z) } , (3'4) 

a(z)=(l+tan h(z)}/2, (3B) 

a(z)={n+2.tan-'(z)}/2n, (3C) 

M 
~ (4) 

z = C-. . p m  
m=O 

Other sigmoidal functions can also be used here. In the con- 
text of design optimization, a trained NN represents a 
response surface, and the NN output is the objective function. 
In multiple objective optimization, different NNs can be used 

4 
for different objective functions. A rapid training algorithm 
that determines the connection weights C,, and coefficients 
Dn is also needed here. 

The approach set forth in the preceding does reasonably 
5 well in an interpolative mode, that is, in regions where data 

points (parameter value vectors) are reasonably plentiful. 
However, this approach rarely does well in an extrapolative 
mode. In this latter situation, a precipitous drop in estimation 
accuracy may occur as one moves beyond the convex hull 

10 defined by the data point locations. In part, this is because the 
sigmoidal functions are not the most appropriate basis func- 
tions for most data modeling situations. Where the underlying 
function(s) is a polynomial in the parameter values, a more 
appropriate set of basis functions is a set of Legendre func- 

15 tions (if the parameter value domain is finite), or a set of 
Laguerre or Hermite functions (if the parameter value domain 
is infinite). Where the underlying function(s) is periodic in a 
parameter value, a Fourier series may be more appropriate to 
represent the variation of the function with that parameter. 

Two well known approaches are available for reducing the 
disparity between an underlying function and an activation 
function. A first approach, relies on neural nets and uses 
appropriate functions of the primary variables as additional 
input signals for the input nodes. These functions simplify 

25 relationships between neural net input and output variables 
but require a priori knowledge of these relationships, includ- 
ing specification of all the important nonlinear terms in the 
variables. For example, a function of the (independent) 
parameter values x and y, such as 

h(x,y)=a.~+b.xy+c.~+dx+ey+~ ( 5 )  

where a, b, c, d, e and fare  constant coefficients, would be 
better approximated if the terms x, y, x2, x'y and y2 are all 

35 supplied to the input nodes of the network 21. However, in a 
more general setting with many parameters, this leads to a 
very large number of input nodes and as-yet-undetermined 
connection weights C,,. 

A second approach, referred to as a support vector machine 
40 (SVM), provides a nonlinear transformation from the input 

space variables p, into a feature space that contains the origi- 
nal variables p, and the important nonlinear combinations of 
such terms (e.g., (pl)', ( P ~ ) ( ~ ~ ) ~ ( P ~ ) ~  and ~xP(P,)) as coor- 
dinates. For the example function h(pl,p2) set forth in Eq. (5 ) ,  

45 the five appropriate feature space coordinates would be pl, p2, 
(pl)', p1'p2 and (p2)'. Very high dimensional feature spaces 
can be handled efficiently using kernel functions for certain 
choices of feature space coordinates. The total mapping 
between the input space of individual variables (first power of 

50 each parameter p,) and the output space is a hyperplane in 
feature space. For a model that requires only linear terms and 
polynomial terms of total degree 2 (as in Eq. (5 ) ) ,  in the input 
space variables, the model can be constructed efficiently 
using kernel functions that can be used to define inner prod- 

55 ucts of vectors in feature space. However, use of an SVM 
requires a priori knowledge of the functional relationships 
between input and output variables. 

The mapping between the input space parameters and the 
output function is defined using a kernel function and certain 

60 Lagrange multipliers. The Lagrange multipliers are obtained 
by maximizing a function that is quadratic and convex in the 
multipliers, the advantage being that every local minimum is 
also a global minimum. By contrast, a neural net often exhib- 
its numerous local minima of the training error(s) that may 

65 not be global minima. However, several of these local minima 
may provide acceptable training errors. The resulting multi- 
plicity of acceptable weight vectors can be used to provide 

2o 

30 
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superior network generalization, using a process known as Note that steps 42-48 can be embedded in an optimization 
network hybridization. A hybrid network can be constructed loop, wherein the connection weights are changed according 
from the individual trained networks, without requiring data to the rules of the particular optimization method used. 
re-sampling techniques. The hybrid NNiSVM system relies on the following 

An attractive feature of a neural net, vis-a-vis an SVM, is 5 broadly stated actions: (1) provide initial random (or other- 
that the coordinates used in a feature space do not have to be wise specified) connection weights for the NN; (2) use the 
specified (e.g., via kernel functions). However, use of an activation function(s) and the connection weights associated 
SVM, in contrast to use of a neural net, allows one to intro- with each hidden layer unit to construct inner products for the 
duce features spaces with a large number of dimensions, SVM; (3) use the inner products to compute the Lagrange 
without a corresponding increase in the number of coeffi- i o  multipliervalues; (4) compute a training error associated with 
cient s . the present values of the connection weights and Lagrange 

A primary contribution of the present invention is to pro- multiplier values; (5) if the training error is too large, change 
vide a mechanism, within the NN component, for determin- at least one connection weight and repeat steps (2)-(4); (6) if 
ing at least the coordinate (parameter) combinations needed the training error is not too large, accept the resulting values 
to adequately define the feature space for an SVM, without 15 ofthe connection weights and the Lagrange multiplier values 
requiring detailed knowledge of the relationships between as optimal. 
input parameters and the output function. This method has several advantages over a conventional 

FIG. 3 is a schematic view of anNNiSVM (neural network/ SVM approach. First, coordinates that must be specified a 
support vector machine) system 31, including an NN compo- priori in the feature space for a conventional SVM are deter- 
nent and an SVM component, according to the invention. The 20 mined by the NN component in an NNiSVM system. The 
system 31 includes input layer nodes 334 (i=l, 5) and hidden feature space coordinates are generated by the NN compo- 
layer nodes 35-j (i=1,2,3). FIG. 3 also indicates some of the nent to correspond to the data at hand. In other words, the 
connection weights associated with connections of the input feature space provided by the NN component evolves to 
layer terminals and the hidden layer terminals. More than one match or correspond to the data. A feature space that evolves 
hidden layer can be provided. The hidden layer output signals 25 in this manner is referred to as “data-adaptive.’’ The feature 
are individually received at an SVM 37 for furtherprocessing, space coordinates generated by the NN component can be 
including computation of a training error. If the computed easily augmented with additional user-specified feature space 
training error is too large, one or more of the connection coordinates (parameter combinations) and kernel functions. 
weights is changed, and the (changed) connectionweights are Second, use of activation functions that are nonlinear func- 
returned to the NN component input terminals for repetition 30 tions of the connection weights in the NN component rein- 
of the procedure. Optionally, the SVM 37 receives one or troduces the possibility of multiple local minima and pro- 
more user-specified augmented inner product or kernel pre- vides a possibility of hybridization without requiring data 
scriptions (discussed in the following), including selected resampling. 
combinations of coordinates to be added, from an augmenta- The feature spaces generated by the NN hidden layer can 
tion source 38. 35 be easily augmented with high-dimensional feature spaces 

FIG. 4 is a flow chart illustrating an overall procedure without requiring a corresponding increase in the number of 
according to the invention. In step 41, the system provides connection weights. For example, a polynomial kernel con- 
(initial) values for connection weights C,, for the input layer- taining all monomials and binomials (degrees one and two) in 
hidden layer connections. These weights may be randomly the parameter space coordinates can be added to an inner 
chosen. The input signals may be a vector of parameter values 40 product generated by the SVM component, without requiring 
p=(pl, . . . , pM) (M=5 inFIG. 3) inparameter space. In step 42, any additional connection weights or Lagrange multiplier 
output signals from the hidden layer are computed to define coefficients. 
the feature space for the SVM. The NN component of the The NNiSVM system employs nonlinear optimization 
system will provide appropriate combinations of the param- methods to obtain acceptable connection weights, but the 
eter mace coordinates as new coordinates in a feature mace 45 weight vectors thus found are not necessarilv uniaue. Manv 
for the SVM (e.g.> ulT1> u 2 T 2 >  u 3 T 1 2 >  u4=p1’p2> uS’P$> 

from Eq. (5)) 
In step 43, feature space inner products that are required for 

the SVM are computed. In step 43A, user-specified feature 
space coordinates and corresponding inner products and ker- 
nel functions are provided. Note that the feature space is a 
vector space with a corresponding inner product. 

In step 44, a Lagrange functional is defined and minimized, 
subject to constraints, to obtain Lagrange multiplier values 
for the SVM. In step 45, the NN connection weights and the 
Lagrange multiplier coefficients are incorporated and used to 

u _ . I  

different weight vectors may provide acceptably low training 
errors for a given set of training data. This multiplicity of 
acceptable weight vectors can be used to advantage. If vali- 
dation data are available, one can select the connectionweight 

50 vector and resulting NNiSVM system with the smallest vali- 
dation error. In aerodynamic design, this requires additional 
simulations that can be computationally expensive. 

If validation data are not available, multiple trained NNs or 
NNiSVM systems can be utilized to create a hybrid 

55 NNISVM. A weighted average of output signals from trained 
multiple NNiSVMs is formed as a new hybrid NNiSVM 

compute a training error associated with this choice of values solution. Where the weights are equal, if errors for the N 
within the NNISVM. individual output solutions are uncorrelated and individually 

In step 46, the system determines if the training error is no have zero mean, the least squares error of this new solution is 
greater than a specified threshold level. If the answer to the 60 a factor of N less than the average of the least squares errors 
query in step 46 is “no”, the system changes at least one for the N individual solutions. When the errors for the N 
connection weight, in step 47, preferably in a direction that is individual output solutions are partly correlated, the hybrid 
likely to reduce the training error, and repeats steps 42-46. If solution continues to produce a least squares error that is 
the answer to the query in step 46 is “yes”, the system inter- smaller than the average of the least squares errors for the N 
prets the present set of connection weights and Lagrange 65 individual solutions, but the difference is not as large. The N 
multiplier values as an optimal solution of the problem, in trained NNiSVMs used to form a hybrid system neednot have 
step 48. the same architecture or be trainedusing the same training set. 
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FIG. 5 graphically illustrates results of applying an location rk. That is, a total of K NNiSVM systems are used to 
NNiSVM analysis according to the invention to a six-param- model the overall pressure dependence on the parameters p,. 
eter model, namely, an approximation to the fifth degree The calculated pressure distribution P(rk;pvert) andor the air- 
polynomial y=x(l -x2)(4-x2). Data are provided at each of 1 1 foil can be replaced by any other suitable physical model, in 
training locations (indicated by small circles on the curve) in 5 aerodynamics or in any other technical field or discipline. 
the domain of the variable x. After a few iterations of an Used together, the trained NNiSVM systems will provide the 
NNiSVM analysis, the 1 1 training values, (x,,y,)=(x,,x,( 1 - pressure distribution P(r,;p) for general parameter value vec- 
x2)(4-x2)), provide the solid curve as a generalization, tors p. 
using theNNiSVManalysis. The dashedcurve (barelyvisible 
in FIG. 5) is a plot of the original fifth order polynomial. 

FIG. 6 graphically illustrates similar results of an applica- 
tion of the NNiSVM analysis to a logarithm function, y=ln 

alization provided by the NNiSVM analysis. 

tion of the NNiSVM analysis to an exponential €unction, 
y=6.exp(-0.5.x2), using 11 training values. The solid curve is 
the generalization provided by the NNiSVM analysis, using 
the 11 training values. 

superior to corresponding generalizations provided by con- 
ventional approaches. In obtaining such a generalization, the 
same computer code can be used, with no change of param- 
eters or other variables required. 

applicationofaresponse surface methodology (RSM)usedin 
this invention to obtain an optimal cross-sectional shape of an 
airfoil, as an example, where specified pressure values at 
selectedlocations on the airfoil perimeter are to be matchedas 
closely as possible. In step 81, a set of parameters, expressed 30 

In step 86, a first objective function, such as 
10 

K 

(x+4), using 11 training values. The solid curve is the gener- OBJ(f’; Po;  l ) = c w k { P ( T k ;  P ) - P ( T k ; O P f ) 1 ’ ,  

k=l 

FIG. 7 graphically illustrates similar results of an applica- 15 

is introduced, where {w,} is a selected set of non-negative 
weight coefficients. 

In step 87, the minimum value of the first objective func- 
The generalization in each of FIGS. 5 ,  6 and 7 is vastly 20 tion OBJ(p;pO;l) and a corresponding parameter vector p=p 

(min) are determined for parameter vectors p within a 
selected sphere having a selected diameter or dilatation factor 
d, defined by Ip-pol 5 d  (with d typically in a range l e d 5  lo), 
using a nonlinear optimization method. Other measures of 

In step 88, the system calculates a second objective func- 
tion, whichmay be the first objective function or (preferably) 
may be defined as 

FIGS. SA, 8B and 8C are a flow chart illustrating the 25 specifying a “trust region” can also be used here. 

here as a vector p=(pl, pM), is provided that adequately K (6Bi 
describes the airfoil cross-sectional shape (referred to as a OBJ(f’; Po;  2 )  = c W k { P ( T k ;  p ;  c F D ) - P ( T k ;  O p f ) ] ’ ,  

“shape” herein), where M (2 1) is a selected positive integer. k=l 

For example, the airfoil shape might be described by (1) first 
and second radii that approximate the shape of the airfoil at 35 

the leading edge and at the trailing edge, (2) four coefficients where P(r,:p;CFD) is a pressure value computed using a CFD 
that describe a tension spline fit of the upper perimeter of the simulation. for p=p(min) and p-0. The system then deter- 
airfoil between the leading and trailing edge shapes, and (3) mines if OBJ(p(min);p0;2)eOBJ(pO;p0;2) for the intermedi- 
four coefficients that describe a tension spline fit of the lower ate minimum value parameter vector, p=p(min). One can use 
perimeter of the airfoil between the leading and trailing edge 40 the first objective function OBJ(p;pO;l), defined in Eq. (6A), 
shapes, a total of ten parameters. In a more general setting, the rather than the objective function OBJ(p;p0;2) defined in Eq. 
number M of parameters may range from 2 to 20 or more. (6B), for this comparison, but the resulting inaccuracies may 

In step 82, initial values of the parameters, p-0, are pro- be large. 
vided from an initial approximation to the desired airfoil in step 88 is ‘‘no” for the choice 
shape. 45 of dilatation factor d, the dilatation factor d is reduced to a 

In step 83, optimal data values P(r,PPt) (e.!&> airfoil Pres- smaller value d’(1 ed’ed), in step 89, and steps 88 and 89 are 
Sure values Or airfoil heat transfer values) are Provided at repeated until the approximation pressure values {P(r,,p)}, 
selected locations rF(X,,Y&(k=l, . . . > K) on the airfoil for the extrapolated parameter value set provide an improved 
perimeter. approximation for the optimal values for the same airfoil 

constructed, with a centroid or other selected central location in step 88 is “yes,,, the system 

lying on a unit radius sphere. Each of the M+l vertices of the the intermediate minimum-cost parameter value set, p=p 

Ifthe answer to the 

In step 84, an equilateral M-simplex, denoted MS(pO), is 50 perimeter locations, Frk. 

If the answer to the 
at P’Po, in M-dimensional Parameter space, with vertices 

M-simplex MS(po) is connected to the centroid, P’Po, by a 

moves to step 90, the (modified) objective function and 

(min), whichmay lie inside or outside the M+implex MS(p0) 
vector (m=l> . . . > M+l) in parameter space. More than 55 in parameter space, Minimization of the objective function 

OBJ(p;pO) may include one or more constraints, which may 

tions, The (modified) objective function definition in Eq, (6A) 
(or in Eq. (6B)) can be replaced by any other positive definite 

the M+l vertices can be selected and used within the M-sim- 

plex edges can be added to the M+l vertices. These additional 
locations will provide a more accurate NNiSVM model. 

calculation is performed for an extended parameter value set, 
consisting of the parameter value vectors p-0 and each of 

PleX. For midpoints Of each Of the M(M+1)i2 sim- be enforced using the well known method of penalty fmC- 

In step 85, a computational fluid dynamics (CFD) or other 60 definition of an objective function, for example, by 

the M+l M-simplex vertices, p=p,,,t’pO+Ap(m), to obtain a K ( 6 0  
calculated pressure distribution P(rk;pvert) at each of the 
selected perimeter locations, r=rk for each of these parameter 65 

OBJ(f’; P o )  = c W k l P ( T k ;  P ) - P ( T k ;  OP‘)1‘. 

k=l 

value sets. One hybrid NNiSVM is assigned to perform the 
analysis for all vertices in the M-simplex MS(p0) at each 
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where the exponent q is a selected positive number. lengths for the initial airfoil shape and the optimized airfoil 
The constraints imposed are also modeled using an shape are approximately 0.4 inches. Note that the trailing 

NNiSVM system with an appropriate objective function edge of the optimal blade shape has a radius of curvature that 
incorporating these constraints, for example, as part of a is larger than the radius of curvature of the initial blade shape, 
simplex method as described in W.H. Press et al, Numerical 5 for this example. 
Recipes in C, Second Edition, 1992, Cambridge University FIGS. 11A and 11B graphically illustrate surface pressure 
Press, pp. 430-438. distribution for the initial and optimized airfoil shapes, 

If the original parameter value set p has an insufficient respectively, shown in FIG. 9. The difference between the 
number of parameters, this will become evident in the pre- upper and lower pressure curves at any given location x on the 
ceding calculations, and the (modified) objective function i o  airfoil perimeter represents the local airfoil loading. For the 
OBJ(p(min);pO) or OBJ(p(min);pO)* will not tend toward initial airfoil shape, this load increases from nearly zero at the 
acceptably small numbers. In this situation, at least one addi- leading edge ( ~ ~ 0 . 0 )  to a maximum at about ~ ~ 0 . 7 5  and 
tional parameter would be added to the parameter value set p decreases to small values near the trailing edge. Notice that 
and the procedure would be repeated. In effect, an NNiSVM the loading is inappropriate, because the load is smallest 
procedure used in an RSM analysis will require addition of 15 where the airfoil is thick (near the leading edge) and is largest 
(one or more) parameters until the convergence toward a where the airfoil is thin. The load for the optimal airfoil shape 
minimum value that is acceptable for an optimized design. is much improved the larger loads occur where the airfoil is 

In step 91, the system determines if the (modified) objec- thick, and thus stronger. The improved loading for the optimal 
tive function OBJ(p(min);pO)* is no greater than a selected airfoil shape also reduces vortex shedding amplitudes. 
thresholdnumber (e.g., 1 or FIG. 12 graphically illustrates computed pressure ampli- 
answer to the query in step 91 is "no", a new M-simplex tude value PA (maximum pressure minus corresponding 
MS(p'0) is formulated, in step 92, withp'O=p(min) as the new minimum pressure as the pressures fluctuate in time) for the 
center, and steps 85-90 are repeated at least once. Each time, initial and optimizedairfoil shapes.At the trailing endT-END 
a new parameter value set, p=p(min), is determined that of the blade, the optimal airfoil shape PA value is about 25 
approximately minimizes the objective function OBJ(p;p'O). 25 percent of the (much higher) PA value for the initial airfoil 

If the answer to the query in step 91 is "yes", the system shape. Along the entire airfoil perimeter, the optimized airfoil 
interprets the resulting parameter set, p=p(min), and the shape provides a computed PA value that is, with a few 
design described by this parameter set as optimal, in step 93. exceptions, about 20-50 percent of the PA value for the initial 
The method set forth in steps 81-93 is referred to herein as a airfoil shape. 
response surface method. In manufacturing a blade according to the optimized airfoil 

FIG. 9 graphically illustrates an initial turbine airfoil shape shape, some perturbations in dimensions, relative to the ideal 
(dotted curve) and a corresponding optimized turbine airfoil optimized dimensions, are inevitable. These perturbations 
(solid curve) that is produced according to the invention, and their effects have been modeled by (1) assigning a local 
where both airfoils have the same scale and are superimposed thickness (at selected locations on the airfoil perimeter) in 
for ease of comparison. The optimized airfoil shape was 35 which the airfoil thickness, in a direction perpendicular to the 
determined, beginning with the initial airfoil shape and local slope of the airfoil, varies by an amount f(r)hO, where 
imposing the following constraints: (1) mass flow rate h0=0.006 inch and f is a random variable uniformly distrib- 
through a vane row is preserved; (2) flow exit angle from a uted over a range -1 .OSfS 1 .O (varying from one perimeter 
vane row is preserved; (3) axial chord of a vane remains the location r to another); (2) computing the perturbations to the 
same: (4) throat area remains the same: (5) no adverse effects 40 airfoil shane at locations intermediate between the selected 

in appropriate units). If the 20 

30 

I \ ,  I \ ,  

on downstream rotor row; (6) no changes in airfoil manufac- 
turing and assembly procedures; (7) vortex shedding from the 
airfoil trailing end (T-END) is reduced relative to the much 
larger vortex shedding associated with the initial airfoil 
shape; and maximization of trailing end angle @(TE) so that 45 
the optimized airfoil is thicker than the initial airfoil. 

The constraint(s) imposed can include the preceding con- 
straints and can include one or more of the following: vortex 
shedding from a trailing edge of the airfoil is no greater than 
a selected threshold value: a difference between anv resonant 50 

locations, using a spline; and (3) recomputing the pressure 
loading value for the resulting changed airfoil shape. This 
modeling was performed for ten sets of independently chosen 
sets of random variables {f(r)}r, and the resulting ten per- 
turbed pressure amplitude distributions for the optimized air- 
foil shape are graphically illustrated in FIG. 13 (perturbations 
1-5) and FIG. 14 (perturbations 6-10). For comparison pur- 
poses, the pressure amplitude values PA for the initial airfoil 
shape are included in each of FIGS. 13 and 14. FIGS. 13 and 
14 demonstrate the robustness of the ontimized airfoil shane 

frequency of the airfoil and vortex shedding frequency is at to modest perturbations in airfoil thickness at each of a 
least equal to a threshold frequency difference; mass of the sequence of airfoil perimeter locations: the PA values for the 
airfoil is no larger than a threshold mass value; pressure value perturbed optimized airfoil shapes for these ten perturbations 
at each of a sequence of selected locations along a perimeter are nearly the same and are again about 20-50 percent of the 
of the airfoil differs from a corresponding reference pressure 55 corresponding PA values for the initial airfoil shape. 
value by no more than a threshold pressure difference value; FIGS. 15 and 16 graphically illustrate the perturbed opti- 
mass flow rate through each blade or vane is unchanged (from mized airfoil shape in a neighborhood of the trailing end 
the value used for the initial airfoil shape). The optimal shape T-END for perturbations 1-5 and 6-10, respectively. The air- 
should be substantially invariant under scale change by a foil thickness appears to change by 10-30 percent near 
factor of Q (Q.0) and/or under rotation by a selected angle in 60 T-END for each of these ten perturbations. 
a plane containing the drawing(s) in FIG. 9. For a particular design determined using the constraints set 

FIG. 10 graphically compares the trailing edge ofthe initial forth in the preceding, the following improvements have been 
airfoil shape and of the optimized airfoil shape in greater confirmed by numerical computation and modeling of the 
detail. Indicating the increased thickness of the optimized resulting airfoil shape: (1) the optimized airfoil shape is 
airfoil shape at T-END. This increased thickness, adjacent to 65 thicker and stronger (mean operating stresses reduced by an 
the trailing end and elsewhere, of the optimized airfoil shape estimated 37 percent); (2) vortex shedding amplitude is 
increases the airfoil resonant frequency. The axial chord reduced substantially; (3) vortex shedding frequency is 
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reduced, lowest airfoil resonant frequency is increased, and response of the object is to be optimized. The object may be 
the frequency difference is increased to at least 27 percent of a aircraft wing or turbine blade for which an ideal pressure 
the vortex shedding frequency; (4) shedding characteristics distribution at specified locations on the object is to be 
are robust and change relatively little in response to random achieved as closely as possible. The object may be a chemi- 
changes in airfoil dimensions that might be introduced by 5 cally reacting system with desired percentages of final com- 
manufacturing processes; (5) unsteady pressure loading on pounds, for which total thermal energy output is minimized. 
the optimized shape airfoil is reduced by 50-80 percent, rela- The object may be represented at spaced apart locations or at 
tive to the initial airfoil shape; (6) airfoil surface cracking is spaced apart times by a group of independent coordinates, 
(predicted to be) eliminated with the optimized airfoil shape; and an objective or cost function is presented, representing 
(7) the optimized airfoil trailing edge shape has a larger i o  the response to be optimized. One or more constraints, either 
minimum radius and is easier to manufacture; (8) blade fab- physical or numerical, are also set down, if desired. 
rication time can be reduced by eliminating certain welding In an NN analysis, one relevant problem is minimizing 
activities; (9) all constraints are satisfied; (10) no substantial empirical risk over a sum of linear indicator or characteristic 
change(s) in turbine performance; (11) airfoil mean life to 
failure is predicted to be increased by an unlimited amount, 15 
based on a standard assumption of 10 percent alternating 
stresses; and (12) shedding resonance response is eliminated. 
The present design is intended for low speed, incompressible 
flow, although several of the preceding features appear to 

Table I sets forth airfoil perimeter coordinates, in an xy- 
plane, for the optimized airfoil shape at a sequence of 301 where e is an indicator or characteristic function, x is a coor- 
locations, where the x-axis and y-axis are positioned as indi- dinate vector and w is a vector of selected weight coefficients. 
cated in FIG. 9. Substantially the same optimal shape would Consider a training Set of(N+l)-tuPles (Xi,Yi), (Xz,Yz), . . . , 
result if fewer than all the 301 locations inTable I are specified 25 ( x ~ J ~ ) ,  where each xJ=(xJ1' . . . , 
(e.g., lim ofthe 301 points, where m=2, 3, 4, . . . ). ing a vector and yJ is a scalar having only the values - 1 or + 1. 

The perturbation procedure used to generate the perturbed The indicator function e(z) has only two values, 0 and 1, 
shapes s h o w n i n ~ l ~ s ,  9-16 maybe appliedmore generally to and is not generally differentiable with respect to a variable in 
generate a perturbed shape airfoil, as illustrated in FIG. 17. A its argument. The indicator function e(z) in Eq. (A-1) is Often 
sequence {x,}, of N spaced apart locations on the perimeter 30 replaced by a general sigmoid function s(Z) that is differen- 
ofan is chosen, where ~ = 1 0  in FIG, 17 for illustration, tiable with respect to z everywhere on the finite real line, is 
and a line segment L(x,), of a selected unit length is extended monotonicallY increasing With Z, and satisfies 
perpendicular to the airfoil at the location x,. The unit length 
carries its own sign (2) and is preferably a selected small 
positive or negative number equal to f;L, where f, is a 35 
selected fraction, for example, -0.105f,<0.10, or more pref- 

of the airfoil. The shape of the airfoil at the location x, is 

(x,), and the perturbed shape between perimeter locations 40 

by a cubic spline or other appropriate numerical procedure, to 

airfoil shape S(initia1). The perturbed airfoil shape may be 
denoted 

functions 

(A-1) 
f ( x ,  w) = e  w, .xi , I: I 

extend to high speed flow as well. 20 

is an N-tuP1e 

Llm,--,S(z)=O, (A-2a) 

Llmz~+,S(z)=l. (A-2b) 

Examples of suitable sigmoid functions include the following erably -0.055f~<0.05, and is a chord length (Or diameter) 

perturbed (extended or contracted) by the signed length f,.L S(z)=1/{ l+exp(-cu)}, 

x,-~, x, and x,+~ (n=1, . . . , N-1) (with xo=xN) is determined 

provide a perturbed shape S(perturb) based on the initial 

S(z)={ l+tm h(fi.z+x)]/Z 

S(z)={n+2.tm~'(6.z+t}nn, 

45 where a, fl and 6 are selected positive values. The indicator 
sum f(x,w) in Eq. (A-1) is replaced by a modified sigmoid 

S(perturb)=Q{S(initial); {x,f;L},;N}, (7) sum 

(A-3) 

where 
in this paragraph, {x,,f;L},; is the sequence of selected 5o 

f;L, and N is the number of perimeter locations used 
( 2 5 N 5  100). One may, for example, begin with the optimal 
shape indicated in FIG. 9 and apply this perturbation proce- 
dure to Produce a modified optimal shape; or one may apply 55 where S is a selected linear or nonlinear function. 

is a functional that performs the procedure indicated 

locations x, and corresponding signed line segment lengths G(x,  w)  = s W !  .x' 

this perturbation procedure as part Of the NNiSVM process- 
ing. One may rotate the Optimal shape in the xy-plane 

In orderto minimize the empirical risk, one must determine 
the parameter values w, that minimize an empirical risk fmc- 

and/or apply a scale factor o f q  (q.0) to the optimal shape, as 
discussed in connection with FIG. 9. 

tional 

60 
K (A-4) 

APPENDIX 
Remp(w) = ( yJ  - WJ, w)) * /K ,  

Examples of an NN analysis and of an SVM analysis are J=I 

presented here. The invention is not limited to a particular NN 

Consider an object, represented by a group of coordinates 
x=(xl, x2, . . . , x"), for which some physical feature or 

analysis or to a particular SVM analysis. 6 5  
which is differentiable in the vector components w. One may, 
for example, use a gradient search approach to minimize 
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R,,(w). The search may converge to a local minimum, 
which may or may not be a global minimum for the empirical 
risk. 

Assume, first, that the training data { (x,,y,)} can be sepa- 

(w.x,)-g=O, ('45) 

where g partly defines the hyperplane. A separating hyper- 
plane satisfies 

rated by an optimal separating hyperplane, defined by 5 

10 
(w.x,)-gZ 1 b,Z l ) ,  (A-6a) 

(w.x,)-gs-lb,s-l). (A-6b) 

An optimal separating hyperplane maximizes the functional 15 

@(w)=(w.w)/2, ('47) 

with respect to the vector values w and the value g, subject to 
the constraints in Eqs. (A-6a)-(A-6b). Unless indicated oth- 
erwise, all sums in the following are understood to be over the 20 
index j (=l, . . . , K). 

A solution to this optimization problem is given by a saddle 
point of a Lagrange functional 

25 

30 

At a saddle point, the solutions (w,g,a) satisfy the relations 

aL/ag=o, ('49) 

m a w  =o , (A-10) 
35 

with the associated constraint 

CY,ZO, (A-1 1) 

Equation (A-9) yields the constraint 40 

i;E,.y, = o  
,=I 

(A-12) 

45 

Equation (A-10) provides an expression for the parameter 
vector w of an optimal hyperplane as a linear combination of 
vectors in the training set 50 

w =Zy,.CY,.x,, (A-13) 

An optimal solution (w,g,a) must satisfy a Kuhn-Tucker con- 
dition 

55 
~,{((x,.w)-g)~(V,-l)=O(=l, . . . , K). (A-14) 

Only some of the training vectors, referred to herein as "sup- 
port vectors," have non-zero coefficients in the expansion of 
the optimal solution vector w. More precisely, the expansion 
in Eq. (A-13) can be rewritten as 60 

w =Zy,.CY,.x,. (A-15) 

support vectors 

Substituting the optimal vector w back into Eq. (A-8) and 65 
taking into account the Kuhn-Tucker condition, the Lagrange 
functional to be minimized is re-expressed as 

14 

(A-16) 

This functional is to be maximized, subject to the constraints 
expressed inEqs. (A-13) and (A-14). Substituting the expres- 
sion for optimal parameter vector w into Eq. (A-14), one 
obtains 

(w~x)-g=ZCY,'(x,~x)-g=o. (A-17) 

The preceding development assumes that the training set 
data { (x,,y,)} are separable by a hyperplane. If these data are 
not separable by a hyperplane, one introduces non-negative 
slack variables x,(i=l, . . . , K) and a modified functional 

@(w)=(w.w)+C.x,, (A-18) 

subject to the constraints 

y,.((w.x,)-g)Z 1 -xi (A-19) 

where the (positive) coefficient C corresponds to an inter- 
penetrationoftwo ormore groups oftraining set (N+l)-tuples 
into each other (thus, precluding separation by a hyperplane). 
Repeating the preceding analysis, where the functional @(w) 
replaces the term(w.w), an optimal solution (w,g,a) is found 
as before by maximizing a quadratic form, subject to the 
modified constraints 

ZCY, y,=O . , (A-20a) 

osCY,sc. (A-20b) 

Use of (only) hyperplanes in an input space is insufficient for 
certain classes of data. See the examples in FIGS. 11A and 
11B. 

In a support vector machine, input vectors are mapped into 
a high dimension feature space Z through a selectednonlinear 
mapping. In the space Z, an optimal separating hyperplane is 
constructed that maximizes a certain A-margin associated 
with hyperplane separation. 

First, consider a mapping that allows one to construct deci- 
sion polynomials of degree 2 in the input space. One creates 
a (quadratic) feature space Z having dimension M=N(N+3)/2, 
with coordinates 

u,=x'Q=l, . . . , N: N coordinates) (A-21a) 

~ , + ~ ~ , ' 0 = 1 ,  . . . , N; N coordinates) 

u,+~=xi~x2,xi .x3,xN-, . x ,  (N(N- 1)/2 coordinates). 

(A-21b) 

(A-21c) 

A separating hyperplane constructed in the space Z is 
assumed to be a second degree polynomial in the input space 
coordinates x,(i=l, . . . , N). 

By analogy, in order to construct a polynomial of degree k 
in the input coordinates, one must construct a space Z having 
of the order of Nk coordinates, where one constructs an opti- 
mal separating hyperplane. For example, for k=4, the maxi- 
mum number of coordinates needed in the space Z is 

max(k=4)=(N+k)!/{N!k!), (A-22) 

which is about 10' coordinates for a modest size input space 
of N=l00 independent coordinates. 
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For a quadratic feature space Z, one first determines a 
kernel function K of inner-products according to TABLE 1 -continued 

, N(N+l)I 
(A-23) 

AIRFOIL SHAPE DATA (301 PERIMETER POINTS) 

Pt. No. x-value y-value 5 

One constructs nonlinear decision functions 
I(x)=sgn{Zor,.K(x,x,)+bO} (A-24) 

support vectors 

that are equivalent to the decision function @(x) in Eq. lo 
(A-1 8). By analogy with the preceding, the coefficients a, are 
estimated by solving the equation 

w(cr)=ZCY,-(")Z"~~oL~~.~~K(x,,x,), (A-25) 

15 
with the following constraint (or sequence of constraints) 
imposed: 

ZCY;y,=O, (A-26a) 

CY,ZO. (A-26'~) 20 

Mercer (1909) has proved that a one-to-one correspon- 
dence exists between the set of symmetric, positive definite 
functions K(X,Y) defined on the real line that satisfy 

JK(x,Ylf(nD)dXdJ'Zo (A-27) 25 

for any L2-integrable function f(x) satisfying 
Jf(n)ZdX<rn  (A-28) 

and the set of inner products defined on that function space 30 
{f}. Thus, any kernel functionK(x,,,x,,) satisfying conditions 
of the Mercer theorem can be used to construct an inner 
product of the type set forth in Eq. (A-23). Using different 
expressions for the kernel K(x,,,x,,), one can construct dif- 
ferent learning machines with corresponding nonlinear deci- 35 
sion functions. 

For example, the kernel function 

K(x:x"={ (X'n"+l}", (A-29) 

can be used to specify polynomials of degree up to q (prefer- 40 
ably an integer). 

Much of the preceding development is taken from V.N. 
Vapnik, "An Overview of Statistical Learning Theory", IEEE 
Trans. Neural Networks, vol. 10 (1999), pp. 988-999. The 
present invention provides a hybrid approach in which the 45 
input layer and hidden layer(s) of an NN component are used 
to create a data-adaptive feature space for an SVM compo- 
nent. As indicated in the preceding, the combined NNiSVM 
analysis of the invention is not limited to the particular NN 
analysis or to the particular SVM analysis set forth in this 50 
Appendix. 

TABLE 1 

AIRFOIL SHAPE DATA (301 PERIMETER POINTS) 

Pt. No. x-value v-value 

55 

0.00000 
0.00028 
0.00119 
0.00283 
0.00532 
0.00872 
0.01310 
0.0 1848 
0.02481 
0.03203 
0.04001 

0.00000 
0.00479 
0.00986 
0.01514 
0.02056 
0.02601 
0.03138 
0.03650 
0.04124 
0.04545 
0.04900 

60 

65 

0.04861 
0.05764 
0.06694 
0.07628 
0.08540 
0.09428 
0.10295 
0.11140 
0,11964 
0.12767 
0.13551 
0.14315 
0.15061 
0.15788 
0.16497 
0.17188 
0.17862 
0.18520 
0.19161 
0.19786 
0.20396 
0.20991 
0.21571 
0.22136 
0.22688 
0.23226 
0.23751 
0.24262 
0.247 6 1 
0.25248 
0.25722 
0.26185 
0.26636 
0.27076 
0.27506 
0.27924 
0.28332 
0.28730 
0.29119 
0.29497 
0.29866 
0.30226 
0.30578 
0.30920 
0.31254 
0.31580 
0.31897 
0.32207 
0.32509 
0.32804 
0.33091 
0.33371 
0.33644 
0.33911 
0.34171 
0.34424 
0.34671 
0.34912 
0.35147 
0.35377 
0.35600 
0.35818 
0.36031 
0.36238 
0.36440 
0.36637 
0.36830 
0.37017 
0.37200 
0.37378 
0.37552 
0.37722 
0.37887 
0.38049 
0.38206 

0.05178 
0.05373 
0.05479 
0.05505 
0.05462 
0.05355 
0.05187 
0.049 64 
0.04690 
0.04368 
0.04002 
0.03595 
0.03150 
0.02671 
0.02160 
0.01621 
0.01055 
0.00465 

-0.00146 
-0.00777 
-0.01425 
-0.02088 
-0.02763 
-0.03449 
-0.04144 
-0.04845 
-0.05551 
-0.06261 
-0.06973 
-0.07685 
-0.08397 
-0.09108 
-0.09816 
-0.10520 
-0.11221 
-0.11916 
-0.12606 
-0.13290 
-0.13968 
-0.14638 
-0.15301 
-0.15955 
-0.16602 
-0.17240 
-0.17869 
-0.18490 
-0.19101 
-0.19703 
-0.20296 
-0.20881 
-0.21459 
-0.22030 
-0.22594 
-0.23152 
-0.23704 
-0.24251 
-0.24792 
-0.25329 
-0.25860 
-0.26386 
-0.26907 
-0.27424 
-0.27935 
-0.28442 
-0.28944 
-0.29441 
-0.29934 
-0.30421 
-0.30903 
-0.31381 
-0.31853 
-0.32321 
-0.32783 
-0.33240 
-0.33691 
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TABLE 1 -continued 
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TABLE 1 -continued 

AIRFOIL SHAPE DATA (301 PERIMETER POINTS) AIRFOIL SHAPE DATA (301 PERIMETER POINTS) 

Pt. No. x-value y-value Pt. No. x-value y-value 5 

87) 
88) 
89) 
90) 
91) 
92) 
93) 
94) 
95) 
96) 
97) 
98) 
99) 

100) 
101) 
102) 
103) 
104) 
105) 
106) 
107) 

109) 
108) 

110) 
111) 
112) 
113) 
114) 
115) 
116) 
117) 

119) 
118) 

120) 
121) 
122) 
123) 
124) 
125) 
126) 
127) 
128) 
129) 
130) 
131) 
132) 
133) 
134) 
135) 
136) 
137) 
138) 
139) 
140) 
141) 
142) 
143) 
144) 
145) 
146) 
147) 
148) 
149) 
150) 
151) 
152) 
153) 
154) 
155) 
156) 
157) 
158) 
159) 
160) 
161) 

0.38359 
0.38509 
0.38655 
0.38797 
0.38936 
0.39075 
0.39212 
0.39346 
0.39479 
0.39610 
0.39738 
0.39865 
0.39990 
0.40113 
0.40234 
0.40354 
0.40472 
0.40588 
0.40702 
0.40814 
0.40925 
0.41034 
0.41142 
0.41248 
0.41352 
0.41455 
0.41556 
0.41656 
0.41754 
0.41851 
0.41947 
0.42041 
0.42133 
0.42224 
0.42314 
0.42403 
0.42490 
0.42576 
0.42660 
0.42744 
0.42826 
0.42907 
0.42986 
0.43065 
0.43142 
0.432 18 
0.43294 
0.43367 
0.43440 
0.43512 
0.43583 
0.43652 
0.43721 
0.43789 
0.43855 
0.43921 
0.43985 
0.44049 
0.44112 
0.44173 
0.44234 
0.44294 
0.443 53 
0.44411 
0.44469 
0.44525 
0.445 81 
0.44636 
0.44690 
0.44743 
0.44795 
0.44847 
0.44898 
0.44948 
0.44997 

-0.34137 
-0.34578 
-0.35014 
-0.35444 
-0.35868 
-0.36298 
-0.36726 
-0.37153 
-0.37579 
-0.38003 
-0.38426 
-0.38847 
-0.39267 
-0.39685 
-0.40100 
-0.40514 
-0.40926 
-0.41335 
-0.41742 
-0.42146 
-0.42547 
-0.42946 
-0.43341 
-0.43733 
-0.44121 
-0.445 07 
-0.44888 
-0.45267 
-0.45641 
-0.46013 
-0.46380 
-0.46744 
-0.47104 
-0.47460 
-0.47812 
-0.48161 
-0.48505 
-0.48846 
-0.491 82 
-0.495 15 
-0.49844 
-0.50169 
-0.50490 
-0.50808 
-0.5 1121 
-0.51430 
-0.51736 
-0.52037 
-0.52335 
-0.52629 
-0.52919 
-0.53205 
-0.53488 
-0.53767 
-0.54042 
-0.54313 
-0.54581 
-0.54845 
-0.55105 
-0.55362 
-0.55616 
-0.55865 
-0.56112 
-0.56355 
-0.56594 
-0.56830 
-0.57063 
-0.57293 
-0.57519 
-0.57742 
-0.57962 
-0.58178 
-0.58392 
-0.58602 
-0.58810 
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65 

162) 
163) 
164) 
165) 

10 166) 
167) 
168) 
169) 
170) 
171) 
172) 
173) 

175) 
176) 
177) 
178) 
179) 

174) 

180) 
181) 
182) 
183) 
184) 
185) 
186) 
187) 

189) 
190) 
191) 
192) 
193) 

195) 
196) 
197) 
198) 
199) 

188) 

194) 

200) 
201) 
202) 
203) 
204) 
205) 
206) 
207) 
208) 
209) 
210) 
211) 
212) 
213) 
214) 
215) 
216) 
217) 
218) 
219) 
220) 
221) 
222) 
223) 
224) 
225) 
226) 
227) 
228) 
229) 
230) 
23 1) 
232) 
233) 
234) 
235) 
236) 

0.45045 
0.45093 
0.45141 
0.45187 
0.45233 
0.45278 
0.45320 
0.45358 
0.45391 
0.45419 
0.45440 
0.45453 
0.45456 
0.45449 
0.45429 
0.45392 
0.45334 
0.45252 
0.45143 
0.45001 
0.44836 
0.44656 
0.44471 
0.44279 
0.44084 
0.43895 
0.43717 
0.43552 
0.43400 
0.43259 
0.43129 
0.43007 
0.42892 
0.42785 
0.42684 
0.42587 
0.42496 
0.42408 
0.42325 
0.42245 
0.42168 
0.42094 
0.42021 
0.41944 
0.41861 
0.41773 
0.41678 
0.41578 
0.41471 
0.41356 
0.41234 
0.41103 
0.40964 
0.40815 
0.40656 
0.40486 
0.40305 
0.40112 
0.39905 
0.39685 
0.39450 
0.39199 
0.38931 
0.38645 
0.38339 
0.38013 
0.37665 
0.37293 
0.36897 
0.36473 
0.36021 
0.35538 
0.35023 
0.34473 
0.33886 

-0.59014 
-0.59216 
-0.59414 
-0.59610 
-0.59802 
-0.59992 
-0.601 83 
-0.60374 
-0.60566 
-0.60760 
-0.60954 
-0.61148 
-0.61343 
-0.61538 
-0.61733 
-0.61924 
-0.62110 
-0.62287 
-0.62448 
-0.62582 
-0.62685 
-0.62760 
-0.62819 
-0.62852 
-0.62849 
-0.62800 
-0.62722 
-0.62618 
-0.62497 
-0.62361 
-0.62216 
-0.62064 
-0.61906 
-0.61 743 
-0.61576 
-0.61406 
-0.61234 
-0.61060 
-0.60883 
-0.60705 
-0.60526 
-0.60345 
-0.60 1 64 
-0.59972 
-0.59767 
-0.59550 
-0.59318 
-0.59073 
-0.58812 
-0.58534 
-0.58240 
-0.57928 
-0.57596 
-0.57244 
-0.56872 
-0.56477 
-0.56058 
-0.55615 
-0.55146 
-0.54650 
-0.54125 
-0.53571 
-0.52985 
-0.52367 
-0.51714 
-0.51026 
-0.50299 
-0.49534 
-0.48727 
-0.47877 
-0.46982 
-0.46038 
-0.45044 
-0.43996 
-0.42893 
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TABLE 1 -continued 

AIRFOIL SHAPE DATA (301 PERIMETER POINTS) 

Pt. No. x-value v-value 5 

237) 
23 8) 
239) 
240) 
241) 
242) 
243) 
244) 
245) 
246) 
247) 
248) 
249) 
250) 
25 1) 
252) 
253) 
254) 
255) 
25 6) 
257) 
25 8) 
259) 
260) 
261) 
262) 
263) 
264) 
265) 
266) 
267) 
268) 
269) 
270) 
271) 
272) 
273) 
274) 
275) 
276) 
277) 
278) 
279) 
280) 
281) 
282) 
283) 
284) 
285) 
286) 
287) 
288) 
289) 
290) 
291) 
292) 
293) 
294) 
295) 
296) 
297) 
298) 
299) 
300) 
301) 

0.33259 
0.32590 
0.31875 
0.31113 
0.30299 
0.29430 
0.28502 
0.275 11 
0.26454 
0.25397 
0.24375 
0.23387 
0.22432 
0.21509 
0.20617 
0.19755 
0.18921 
0.18116 
0.17337 
0.165 84 
0.15856 
0.15153 
0.14473 
0.13816 
0.13181 
0.12567 
0.11974 
0.11400 
0.10846 
0.10310 
0.09792 
0.09292 
0.08808 
0.08340 
0.07888 
0.07451 
0.07028 
0.06620 
0.06225 
0.05844 
0.05475 
0.05119 
0.04774 
0.04441 
0.04119 
0.03808 
0.03507 
0.03217 
0.02936 
0.02664 
0.02402 
0.02148 
0.01898 
0.01661 
0.01437 
0.01225 
0.01024 
0.00835 
0.00657 
0.00492 
0.00341 
0.00209 
0.00102 
0.00028 
0.00000 

-0.41731 
-0.405 10 
-0.39229 
-0.37885 
-0.36478 
-0.35006 
-0.33470 
-0.31870 
-0.30206 
-0.28587 
-0.27064 
-0.25630 
-0.24281 
-0.23010 
-0.21811 
-0.20681 
-0.19615 
-0.18609 
-0.17659 
-0.16761 
-0.15913 
-0.15112 
-0.14355 
-0.13638 
-0.12961 
-0.12319 
-0.11712 
-0.1 1137 
-0.10593 
-0.10077 
-0.09588 
-0.09124 
-0.08684 
-0.08267 
-0.07871 
-0.07495 
-0.07138 
-0.06799 
-0.06477 
-0.06171 
-0.05879 
-0.05602 
-0.05339 
-0.05088 
-0.04849 
-0.04622 
-0.04405 
-0.04199 
-0.04002 
-0.03814 
-0.03635 
-0.03465 
-0.03289 
-0.03106 
-0.02913 
-0.02711 
-0.02498 
-0.02271 
-0.02027 
-0.01764 
-0.01477 
-0.01 161 
-0.00813 
-0.00427 
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What is claimed is: 
1. A method for design of a rotating machinery airfoil, the 

method comprising: 
providing an initial airfoil shape; 65 
providing a statement of at least one objective that a final 

airfoil shape must satisfy; 

20 
providing a statement of at least one constraint that the final 

airfoil shape must satisfy; 
using computational fluid dynamics (“CFD’) to estimate a 

pressure value at each of at least two selected perimeter 
locations for the initial airfoil shape; 

using a neural networkhpport vector machine (“NNI 
SVM’) and CFD to determine a modified airfoil shape 
and a corresponding pressure value change, from a pres- 
sure value determined for the initial airfoil shape, at the 
two or more airfoil perimeter locations, in response to 
change of a portion of the airfoil shape in a neighbor- 
hood of the corresponding perimeter location; and 

providing at least one of an alphanumeric description and a 
graphical description of at least one version of the modi- 
fied airfoil shape as the final airfoil shape. 

2. The method of claim 1, further comprising choosing said 
at least one objective from a group of objectives comprising: 
maximizing thickness of said airfoil by maximizing a trailing 
edge wedge angle for said airfoil; minimizing a peak of pres- 
sure loss associated with said airfoil; minimizing a magnitude 
of pressure undulations on a surface of said airfoil; and mini- 
mizing an amplitude of vortex shedding from said airfoil. 

3. The method of claim 1, further comprising choosing said 
at least one constraint from a group of constraints comprising: 
vortex shedding from a trailing edge of said airfoil is no 
greater than a selected threshold value; a difference between 
any resonant frequency of said airfoil and a vortex shedding 
frequency is at least equal to a threshold frequency difference; 
mass of said airfoil is no larger than a threshold mass value; 
pressure value at each of a sequence of selected locations 
along a perimeter of said airfoil differs from a corresponding 
reference pressure value by no more than a threshold pressure 
difference value; airfoil chord length lies in a selected range; 
mass flow rate through a row of said airfoils is substantially 
unchanged; and gas exit angle from a row of said airfoils is 
substantially unchanged. 

4. The method of claim 1, further comprising using said 
computational fluid dynamics to estimate a pressure value at 
eachof at least two selectedperimeter locations for said initial 
airfoil shape for air flow in at least one subsonic flow regime. 

5. The method of claim 1, further comprising determining 
said modified airfoil shape by a process further comprising: 

providing a sequence of N selected spaced apart vector 
locations x, on a perimeter of said airfoil and a line 
segment, having a length L.f, and being substantially 
perpendicular to a curve representing the airfoil perim- 
eter in a neighborhood of each of the locations x,, where 
L is a chord length of said airfoil and f, is a fraction lying 
in a range that is substantially defined by 
-O.lOSf,SO.lO, where line segment number n has a 
first end at the location x, and has a second end located 
at a distance L.f, from the line segment first end 
(n=l, .  . . , N); and 

defining said modified airfoil shape, in part, by a sequence 
of second ends of the line segments number n=l, . . . , N, 
and defining said modified airfoil shape, in part, by a 
selected continuous curve connecting the line segments 
numbersn’-l,n’andn’+l,forn’=l,. . . ,N-1. 

6. The method of claim 1, further comprising determining 
said modified airfoil shape by a process further comprising: 

providing a sequence of N selected spaced apart vector 
locations x,=(x,,y,) on a perimeter of said airfoil and a 
line segment, extending a segment first end at the vector 
x, to a segment second end at a vector x’,=(x’,,y’,), 
where x’,=a.x,+b, y’,,=c.y,+d, where a, b, c and d are 
selected real numbers, and a and b are positive; and 
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defining said modified airfoil shape, in part, by a sequence 
of the line segment second ends number n=l, . . . , N, and 
defining said modified airfoil shape, in part, by a 
selected continuous curve connecting the line segments 
numbers n’-1, n‘ andn’+l, for n’=l, 

7. A system for design of a rotating machinery airfoil, the 

to provide an initial airfoil shape; 
to provide a statement of at least one objective that a final 

airfoil shape must satisfy; 
to provide a statement of at least one constraint that the 

final airfoil shape must satisfy; 
to use computational fluid dynamics (“CFD’) to estimate a 

pressure value at each of at least two selected perimeter 
locations for the initial airfoil shape; 15 airfoil shape; 

to use a neural networ~support vector machine (“NN/ 
SVM’) and CFD to determine a modified airfoil shape 
and a corresponding pressure value change, from a pres- 
sure value determined for the initial airfoil shape, at the 
two or 
change of a portion of the airfoil shape in a neighbor- 
hood of the corresponding perimeter location; and 

to provide at least one of an alphanumeric description and 
a graphical description of at least one version of the 
modified airfoil shape as the final airfoil shape. 

8, The system of claim 7, wherein said computer is further 
programmed to provide said at least one objective from a 

airfoil by maximizing a trailing edge wedge angle for said 

said airfoil; minimizing a magnitude of pressure undulations 
on a surface of said airfoil; and minimizing an amplitude of 
vortex shedding from said airfoil. 

9. The system of claim 7, wherein said computer is further 
programmed to choose said at least one constraint from a 
group of constraints comprising: vortex shedding from a trail- 
ing edge of said airfoil is no greater than a selected threshold 
value; a difference between any resonant frequency of said 
airfoil and a vortex shedding frequency is at least equal to a 
threshold frequency difference; mass of said airfoil is no 
larger than a thresholdmass value; pressure value at each of a 
sequence of selected locations along a perimeter of said air- 

no more than a threshold pressure difference value; airfoil 
chord length lies in a selected range; mass flow rate through a 
row of said airfoils is unchanged; and gas exit angle from a 
row of said airfoils is unchanged. 

10. The system of claim 7, wherein said computer is further 
programmed to use said computational fluid dynamics to 
estimate a pressure value at each of at least two selected 
perimeter locations for said initial airfoil shape for air flow in 
at least one subsonic flow regime. 

11. The system of claim 7, wherein said computer is further 
Programmed: 

to provide a variation in shape of said final airfoil shape 
corresponding to variations that can be introduced in 
manufacture of an airfoil having substantially said final 

to vary said final airfoil shape in a neighborhood of at least 
one of said perimeter locations according to the manu- 
facturing variations, to provide a perturbed final airfoil 
shape; 

to use computational fluid dynamics (“CFD’) to estimate a 
pressure value at each of at least two selected perimeter 
locations for the perturbed final airfoil shape; and 

to provide at least one of an alphanumeric description and 
a graphical description of the perturbed final airfoil 

12. The system of claim 7, wherein said computer is further 

5 

system comprising a computer that is programmed: 

i o  

perimeter locations, in response to 20 

25 shape. 

programmed: 

group ofobjectives comprising: maximizing thickness ofsaid spaced apart locations 

airfoil; minimizing a of loss associated with 30 having a length L’f, and being peqendicu- 

to provide a sequence Of 

x, on a perimeter of said airfoil and a line segment, 

lar to a curve representing the airfoil perimeter in a 
neighborhood of each of the locations x,, where L is a 
chord length of said airfoil and f, is a fraction lying in a 
range that is substantially defined by -O.lOSf,SO.lO, 
where line segment number n has a first end at the 
location x, and has a second end located at a distance 
L.f, from the line segment first end (n=1, . . . , N); and 

to define said modified airfoil shape, in part, by a sequence 
of second ends of the line segments number n=l, . . . , N, 
and to define said modified airfoil shape, in part, by a 
selected continuous curve connecting the line segments 
numbersn’-l,n’andn’+l,forn’=l,. . . ,N-1. 

35 
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foil differs from a corresponding reference pressure value by * * * * *  


